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Fetal lung and liver tissues were examined by ultrasound in 240 subjects during 24 to 38 weeks ofges­
tational age in order to investigate the feasibility ofpredicting the maturity ofthe lung from the textural
features of sonograms. A region of interest of 64 X 64 pixels is used for extracting textural features.
Since the histological properties of the liver are claimed to remain constant with respect to gestational
age, features obtained from the lung region are compared with those from liver. Though the mean values
of some of the features show a specific trend with respect to gestation age, the variance is too high to
guarantee definite prediction of the gestational age. Thus, we restricted our purview to an investigation
into the feasibility of fetal lung maturity prediction using statistical textural features. Out of 64 features
extracted, those features that are correlated with gestation age and less computationally intensive are se­
lected. The results of our study show that the sonographic features hold some promise in determining
whether the fetal lung is mature or immature.
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1. INTRODUCTION

Despite many recent advances in perinatal and neonatal care, respiratory distress syn­
drome (RDS) remains the major cause for morbidity and mortality. A newborn with RDS
has physiologically immature lungs, which cannot support adequate gas exchange without
medical intervention. Therefore, assessment of fetal lung maturity is an invaluable adjunct
to modem perinatal management. RDS syndrome occurs when surface-active compounds
are not present in sufficient quantity for the alveoli to remain open at the end ofexpiration.
The lung collapses and can only be opened, for further gas exchange, by the application of
high positive pressure. Normal lung remains open at the end ofexpiration because surfac­
tants lower surface tension on the alveolar surfaces and allow residual air to remain in the in­
dividual alveoli.

The development of fetal lung involves two components: the biochemical component of
fetal lung maturation is surfactant production and the anatomic component is the develop­
ment of airways and alveoli with fibroelastic components. Structural development of lung
progresses through three stages.' During the glandular stage (first 16 weeks), the lobes of
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the lungs become well demarcated and bronchi and bronchiole airway divisions develop.
The cells lining the airways are thick and columnar proximally and change to cuboidal pe­
ripherally. During the canalicularstage (from 16to 24 weeks), the development ofdistal air­
way occurs in the form ofrespiratory bronchiole branching and vascular proliferation at the
end ofairways. The cells in these distal airways change from cuboidal proximally to thinner
flattened epithelial cells distally. The lungs are not yet capable ofrespiratory function. Dur­
ing the alveolar stage (24 weeks to term), respiratory tissue begins to appear at the ends of
the respiratory bronchioles as alveolar sacs and eventually, as small alveoli. During this
stage, respiration can occur in a premature newborn, ifsurfactant production is sufficient to
lower the surface tension and maintain open airspace.

Anatomic development of fetal lung seems to be closely related to gestational age (GA),
while biochemical maturity can occur as early as 28 weeks or as late as term. Prediction of
lung maturity is important in the management ofhigh-risk pregnancies. Ifthe lungs are ma­
ture to sustain the newborn with no respiratory support, then prolonging ofpregnancy is not
required. However, ifthey are immature, then the risks and costs ofprolonging pregnancy
may have to be weighed, especially, in settings with limited neonatal support.

Methods for determining fetal lung maturity include estimation of fetal size, gestational
age, condition ofplacenta and biochemical tests on amniotic fluid. Though different proper­
ties ofsurfactants in amniotic fluid have been studied, the lecithin/sphingomyelin ratio (LIS
ratio) remains the golden standard. All these tests necessitate amniocentesis, an invasive
procedure that carries risks, and on occasion, may be contraindicated. On the other hand, ul­
trasound is a totally noninvasive investigation procedure. Ofcourse, ultrasound can neither
measure any of the biochemical parameters of fetal lung maturity nor can it provide direct
histological information about fetal lung development. Experimental evidences support the
hypothesis that morphological and biochemical changes alter the diffuse scattering and other
propagation properties offetal lung. Such a change translates to appropriate variations in the
textural appearance of sonogram. Sonographically-determined parameters such as fetal
biparietal diameter and placental grading have been related to fetal maturity, with an accu­
racy ranging from 78% to 100%.2

In the present study, we explore the possibility of estimating the gestation age using the
textural features ofthe sonogram. Arguments for and against the use ofsonographic features
for analyzing fetal lung maturity have been extensively debated.t" Based on sonographic
studies, Thieme et al' conclude that the reflectivity of lung is greater than liver reflectivity
during mid-gestation and is equal to liver reflectivity at term in lambs. Lamb was chosen as
an experimental model, since it had been extensively used in pulmonary physiology research
and since lamb lung is reported to progress through the same stages ofdevelopment as hu­
man lung. Garrett et al' state that reflectivity of the human fetal lung is equal to or less than
that ofliver throughout most ofpregnancy but that the relationship reverses in late gestation.
Nevertheless, Cayea et al' argue that there is no statistically-significant correlation between
the sonographic features and the biochemical fetal lung maturity indices, namely the LIS ra­
tio and Phosphatidylglycerol (PG) values. Employing rfsignals for characterizing fetal lung
and liver tissues, Benson et al" observe, from the reflected signals, a spectral shift from a
higher frequency range to a lower frequency range as the fetal lung makes the transition from
immature to mature state. Feingold et al'used densitometer measurements to establish a cor­
relation between lung-liver echogenicity and the LIS ratio. Podobnik et al' bring forth a rela­
tion between the coefficient ofvariation oflung-liver echogenicity and the LIS ratio. Carson
et a1 8

.
9 have come out with a detailed report about the difficulties in predicting the pulmonary

maturity using ultrasound. They also reported that technical factors play an important part in
determinations offetallung maturity. Sohn et alia, II used liver as a reference organ to stan­
dardize the fetal lung changes depending on the gestation. They found that liver was an
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adequate reference organ, since there was no significant change ofthe reflection pattern be­
tween the different weeks ofgestation, while significant changes were registered in the fetal
lung. Further in 1992 they analyzed 348 subjects and were able to classify the pulmonary
maturity and immaturity. They also said it is possible to determine fetal lung maturity very
easily and noninvasively . Christie" in his technical report of 1992 has also stated that liver
can be considered as a reference organ to analyze pulmonary maturity with gestation age.
Hararlick et al" had proposed textural features, which were computed from the co­
occurrence matrix formed from the image and used it for image classification. These statisti­
cal features were used in analysis and classification of the ultrasound images." 16 Keller et
al" used fractal analysis to segment textural images. Chen et al" defined a feature vector
based on normalized fractional brownian motion (NFBM) to represent the statistical charac­
teristics ofthe medical image surfaces. Verhoeven et al" applied fractal analysis to paramet­
ric imaging of B-mode echograms to detect lesions in echographic images.

Based on the above studies, and the possibility of having a noninvasive determination of
lung maturity, we decided to investigate the relevance ofnew ultrasound image texture pa­
rameters in tackling the problem ofassessing fetal lung maturation. Further, we also explore
the use of liver as a reference in the sonogram-based analysis oflung maturity.

2. MATERIALS AND METHODS

Ultrasound examinations were performed using the real time ATL Apogee 800 plus scan­
ner with a 3.5 MHz curvilinear, broad bandwidth transducer probe with the dynamic range
set at 55 dB. The overall gain was set at an optimal value to get uniform visibility. The ap­
propriate section was frozen and the image was grabbed. Longitudinal and transverse sec­
tions of the fetal thorax and upper abdomen were imaged. The fetal lung and liver were
identified in the thoracic and upper abdominal sections, respectively. Care was taken to
avoid obvious vascular structures in the liver. The machine settings were optimized to ob­
tain a uniform echo texture. The postprocessing curves were unchanged. The focal zone was
always adjusted so that the area of interest was in the focal zone. Data was collected from
240 subjects at various gestation ages from 24 to 38 weeks, at regular intervals oftwo weeks.
The subjects were rigorously followed up throughout the pregnancy and also after delivery.
Only the data corresponding to normal pregnancies, also leading to babies with normal pul­
monary functions, are included in our analysis. The data with untoward outcomes for the fe­
tus or the mother or both were excluded from the study. The motivation was to obtain the
trend ofthe textural features ofthe normal fetal lung as a function ofthe gestation age. Data
was collected both at Mediscan Systems, Chennai, India and at the University Hospital in
Kuala Lumpur, Malaysia. The images were frozen in the machine and then transferred to
videotape. The images were then digitized using the Creative video grabber card. The size
ofthe digitized image is 320 X 240 pixels with a resolution of29 pixels per centimeter.. The
histogram ofthe images was first stretched to have a uniform range ofgray values and then
equalized. A region ofinterest of64 X 64 pixels was used for extracting a number ofquanti­
tative parameters related to texture. Figure 3 exhibits samples ofthe fetal echogram showing
liver and lung regions, with the ROI selected. The lung to liver ratio 10 12 of various feature
values were studied as possible indices ofmaturity. The details ofthe features employed are
given in the subsections that follow.

2.1 Spatial gray level dependence matrices (SGLDM)

The SGLDM are based on the estimation of second order joint conditional probability
density functions, j(i,}\ d ,8 ). Here!(i,}1 d,8 ) is the probability that a pair of pixels separated
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by a distance d at an angle 8 have gray levels i and}. The angles are quantized to 45° inter­
vals. The estimated probability density functions, denoted by, P(i,}1d,8 )13 are defined as,

P(i,)ld,O) = # {((k,l),(m,n))E (LxXLrJ X (LyXLx): k=m ,Il-n I=d,l(k, I) = i, l(m,n) =}}
/T(d,O) (1)

P(i,)ld,45) =#(((k,l),(m,n))E(LxX LrJ X(LyXLx): (k-m <d, I-n =-d)or(k-m =-d,
I-n =d), l(k, l) =i, l(m,n) =}}/ T(d,45°) (2)

Pii] Id,900) = # {((k,l), (m,n)) E (LxXLrJX (LyXLx): Ik- ml = d.l = n,J(k, l) = i, l(m,n) =}} /
T(d,90°) (3)

P(i,) Id,J35°) = # {((k,l), (m,n)) E (LxXLrJX(LyXLx):(k- m = - d, I-n = - d, l(k, I) = i,
l(m,n)=}}/T(d,J35°) (4)

where # denotes the number of elements in the set, Lx and L; are the horizontal and vertical
spatial domains, 1(x,y) is the image intensity at point (x,y), T('d. 8) stands for the total number
ofpixel pairs within the image which have the intersample spacing d and direction angle 8.
Ifa texture is coarse and d is small compared to the sizes ofthe texture elements, the pairs of
points at separation distance d should usually have similar gray values. Conversely, for fine
structures the gray levels ofpoints separated by distance d should often be quite different.

Haralick'<proposed 14 texture measures that can be extracted from the P (i,) I d,8) matri­
ces. In our study, only the following five texture features" are computed.

NG-ING-I

Energy:E[SeCd)]= L L[Se(i,j Id)]2
;=0 j=O

Nu-INu-1

Entropy: H[Se(d)] = L LSe (i,j Id)logse(i,j Id)
;=0 j=O

(5)

(6)

Correlation: c[Sld)] =

NU-lNG-l

L L(i - ~J(j - ~y)se (i,j Id)
;=0 j=O

(7)

Nu-INu-1

Inertia: In[Se(d)] = L L(i - j)2 se(i,j Id)
;=0 j=O

(8)
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Nc-lNc-l 1
Local homogeneity: L[5id)] = I I (. _.2 Ss (i, i Id)

i=O j=O 1+ 1 } )

43

(9)

where sa (i.j Id) is the (i,}t element of5a for a specified d, N G is the number of gray levels in
the image and

So(d) = P (i .i Id, Or);

590 (d) = P (i.] Id. 90°); and

Nc-l Nc-l

/-Lx = Ii Iss (i.] Id)
i=O j=O

Nc-l Nc-I

/-ly = Ii Iss (i,j Id)
j=O i=O

Nc-l Nc-l

o2x = I(i - /-lJ2 I[ss (i, j Id)]
i=O j=O

Nc-l Nc-l

cr 2
y = IU-/-Ly)2 I[ss(i,jld)]

j=O i=O

S45 (d) = ru.] Id, 45°);

5/35 (d) = ra.) 1 d, 135°);

(10)

(11)

(12)

(13)

Each measure is evaluated for values of d=1 and d = 2, and 8 = 0°, 45°,90° and 135°.

2.2 The Gray Level Difference Matrix (GLDM)

For any given displacement 0 = (Ax,L'1y), let I, (x,y) = II(x, y) - I(x+Ax, y+ L'1y) Iand! (i 10)
be the probability density ofIlx, y). Ifthere are m gray values, this has the form ofa m-di­
mensional vector whose i'h component is the probability that Is (x, y) will have value i. The
value of! (i 18) is obtained from the number oftimes Ilx, y) occurs for a given o. Explicitly,

! (i/o) =P(Ilx,y) =i) (14)

Four possible forms ofthe vector 0 are considered: (O,d), (-d, d), (d, 0), and (-d, -d), where
d is the interpixel distance. From each ofthese density functions, five texture features" were
extracted. They are:
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N(J-l

Contrast: CON = 'L)2 I'(i 18 )
i=O

NG~1

Mean = L~/(i 18)
i=O

NG-l

Entropy:ENT= LI'(i 18 )log(l'(i 18))
i=O

NG-11'(i 18)
Inverse difference moment: IDM = L ·2 1

i=O 1 +

NG~1

Angular second moment: A5M = L[I' (i 18 )]2
i=O

(15)

(16)

(17)

(18)

(19)

2.3 Laws' texture energy measures

Laws' texture energy measures"are derived from three vectors, each oflength three: L3 =
(1, 2, 1), E3 = (-1, 0, 1) and 53 = (-1, 2, -1). These, respectively, represent the operations of
local averaging, edge detection and spot detection. Ifthese vectors are convolved with them­
selves or with one another, we obtain, among others, the following five vectors, each of
length five: L5 = (1, 4,6,4,1),55 = (-1, 0, 2, 0, -1), R5 = (1, -4, 6, -4,1), E5 = (-1, -2, 0, 2,1)
and W5 = (-1,2, 0, -2, 1), which perform local averaging, spot, ripple, edge and wave detec­
tion, respectively. The masks used in our analysis are

LSTES LSTSS

-1 -2 0 2 1 -1 0 2 0 -1
-4 -8 0 8 4 -4 0 8 0 -4
-6 -12 0 12 6 -6 o 12 0 -6
-4 -8 0 8 4 -4 0 8 0 -4
-1 -2 0 2 1 -1 0 2 0 -1

The masks were convolved with the image and the entropy ofthe resulting image was cal­
culated.

2.4. Fractal dimension and lacunarity

The above conventional methods measure the coarseness, directionality and energy.
However, they do not consider an important characteristic, namely, the granularity. An in-
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tensity surface ofan ultrasonic image can be viewed as the end result ofrandom walks and a
fractional Brownian motion model" can be used for its analysis. Fractal dimension and
lacunarity are the important features that characterize the roughness and granularity of the
fractal surface.

Given a MX M image I, the intensity difference vector is defined as ID V = [id(l), id (2),...
ides)], where s is the maximum possible scale and id(k) is the average of the absolute inten­
sity difference of all pixel pairs with horizontal or vertical distance k.

We compute id (k) as

M~IM-k-l M-k~l M-l (20)
L L Il(x,y)-l(x,y+k)l+ L Lll(x,y)-l(x+k,y)!

id(k) = x=o y=o x=o y-O

2M(M-k-l)

and D = 3 - H, where D is the fractal dimension. The value of H is obtained by using a
least-squares linear regression to estimate the slope ofthe curve of id(k) versus k in a log-log
scale. Given a fractal setA, letP(m) be the probability that there are m points within a box of

N

size L, centered about an arbitrary point ofA. We have L P( m) = 1, where N is the number of
m=l

possible points within the box. Lacunarity is then defined as

where

N
M= LmP(m)

m=l

and

N
M 2 = Lni2P(m)

m=l

3. RESULTS AND DISCUSSION

(21)

(22)

(23)

Initially, we planned to predict the gestation age from the values ofthe various parameters
computed. However, the variation of the parameters for each gestation age was too high to
give an acceptable level ofprediction of the gestation age.21,22 Hence, we redefined our aim
as one leading to the feasibility offetal lung maturity prediction using statistical textural fea­
tures. Out of the 64 features extracted, 15 features were selected that were correlated with
gestation age and computationally less intensive. Table 2 shows the correlation between the
selected features and gestation age. Various statistics ofthe features were computed, which
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TABLE 1. Descriptive statistics of the features.

Gestation 24 26 28 30 32 34 36 38

Feature
Fracdim

Mean 0.997553 0.992803 1.000472 0.994068 0.990264 0.994453 0.984419 0.991721
Standard Error 0.001746 0.002 0.003702 0.001824 0.001616 0.001706 0.002053 0.002398
Sample Variance 0.000326 0.000416 0.001412 0.000309 0.000248 0.000285 0.000447 0.000541
Minimum 0.95861 0.946061 0.952898 0.943881 0.952703 0.962167 0.911402 0947236
Maximum 1.045082 1.050277 1.170643 1.04591 1.040842 1.033631 1.027207 1.088349
Confidence 0.003462 0.003966 0.007343 0.003623 0.003208 0.003387 0.00407 0.004762
Level(95.0%)

Lacunarity

Mean 1.003829 1.003472 1.008045 1.007302 1.0141 1.00743 1.017701 1.021988
Standard Error 0.002433 0.00297 0.002992 0.002693 0.00288 0.002684 0.003217 0.002959
Sample Variance 0.000633 0.000917 0.000922 0.000674 0.000788 0.000706 0.001097 0.000823
Minimum 0.950341 0.919244 0.938659 0.959433 0.960272 0.921499 0.941075 0.969537
Maximum 1.089855 1.093819 1.084548 1.08471 1.105387 1.083862 1.121861 1.121861
Confidence 0.004823 0.00589 0.005934 0.005348 0.005718 0.005327 0.00638 0.005876
Level(95.0%)

Ang. Sec Mom

Mean 1.043176 1.109718 1.116278 1.058787 0.96012 1.011229 1.093594 1.111283
Standard Error 0.050113 0.052768 0.062925 0.063649 0.063607 0.070713 0.120474 0.138382
Sample Variance 0.045204 0.064043 0.071271 0.093177 0.072826 0.115007 0.261253 0440438
Minimum 0.658292 0.789772 0.392 0.59431 044642 0.720882 0.573806 0.392705
Maximum 1478809 1.89339 1.63 1.754212 1453253 2.016798 2.710926 3.750436
Confidence 0.10573 0.109434 0.132759 0.132 0.1342 0.14665 0.254179 0.286986
Leveli95.0%l

Mean

Mean 1.151282 1.141222 1.110711 1.11237 1.173554 1.178833 1.15599 1249105
Standard Error 0.039466 0.038672 0.039889 0.039622 0.046766 0.035502 0.043136 0.040991
Sample Variance 0.166662 0.155534 0.163883 0.145998 0.20777 0.123516 0.197239 0.157948
Minimum 0491505 0468247 0.373818 0.533705 0.566094 0.504906 0.596895 0.500813
Maximum 2.620473 2.067474 2461013 2.833611 2433622 1.976935 3416967 2490574
Confidence 0.078246 0.076697 0.079119 0.078692 0.092855 0.070461 0.085532 0.081401
Level(95.0%)

Coeff of Variance

Mean 0.873987 0.880154 0.808704 0.849538 0.818386 0.830845 0.744166 0.72828
Standard Error 0.020556 0.028333 0.027685 0.021841 0.027054 0.023268 0.031038 0.032672
Sample Variance 0.045211 0.083486 0.078947 0.044363 0.069532 0.053059 0.102119 0.100343
Minimum 0.371685 0.325561 0.296511 0.311623 0.286104 0.265212 0.3157 0.152894
Maximum 1.528653 1.967861 1.861177 1.187355 1.516266 1.397068 2.15693 1.629918
Confidence 0.040753 0.056192 0.054914 0.043378 0.053716 0.046181 0061544 0.064881
Level(95.0%)

are given in table 1 for 5 features. Results ofa statistical test on the normality ofhistograms
ofthe features is presented in table 3, for brevity, results are shown only for five features of
the 15 features used for analysis. Since the features ofGLDM and SGLDM had similar vari­
ations, and, further, since computation of SGLDM features is both time and memory con­
suming, we discarded the SGLDM features. The features selected are: (i) fractal dimension,
(ii) intercept from fractal measures, (iii) lacunarity from fractal measures, (iv) contrast, (v)
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TABLE 3. Normal distribution parameters of the features.

GestationAge 24 26 28 30 32 34 36 38

Features

Fractal Dimension muhat 1.0006 0.9902 0.9987 0.9955 0.9956 0.9963 0.9824 0.9923

sigmahat 0.0143 0.0270 0.0214 0.0154 0.0152 0.0154 0.0191 0.0267

mu confidence int 0.9933 0.9764 0.9878 0.9876 0.9878 0.9884 0.9726 0.9787

1.0080 1.0040 1.0097 1.0034 1.0034 1.0042 0.9921 1.0060

sigmaconfidence int 0.0107 0.0202 0.0161 00116 0.0114 0.0115 0.0143 0.0200

0.0215 0.0404 0.0321 0.0231 0.0228 0.0230 0.0286 0.0401

lacunarity muhat 1.0032 0.9949 1.0061 1.0050 1.0129 1.0222 1.0145 1.0210

sigmahat 0.0297 0.0320 0.0304 0.0270 0.0271 0.0262 0.0271 0.0285

mu confidence int 0.9880 0.9786 0.9905 0.99\2 0.9990 1.0089 1.0006 1.0064

1.0184 1.0113 1.0216 1.0189 1.0268 1.0356 1.0283 1.0356

sigma confidence int 0.0223 0.0240 0.0228 0.0203 0.0204 0.0196 0.0204 0.0214

0.0445 0.0480 0.0456 0.0405 0.0407 0.0392 0.0407 0.0428

Ang sec mom muhat 1.0400 1.1100 1.1200 1.0900 0.9600 0.9800 1.0900 1.1500

sigmahat 0.2130 0.2490 0.2670 0.3250 0.2700 0.3250 0.5110 0.7120

mu confidence int 0.9340 0.9870 0.9790 0.9230 0.8220 0.8140 0.8320 0.7820

1.1500 1.2400 1.2500 1.2600 1.1000 1.1500 1.3600 1.5100

sigma confidence int 0.1600 0.1870 0.2000 0.2440 0.2030 0.2440 0.3840 0.5340

0.3190 0.3730 0.4000 0.4880 0.4050 0.4870 0.7660 1.0700

Mean muhat 1.0000 1.0000 0.9990 1.0000 0.9980 1.0000 0.9990 0.9980

sigmahat 0.0053 0.0061 0.0043 0.0050 0.0065 0.0058 0.0060 0.0074

mu confidence int 0.9970 0.9970 0.9960 0.9980 0.9950 0.9970 0.9950 0.9940

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

sigma confidence int 0.0040 0.0045 0.0033 0.0038 0.0049 0.0043 0.0045 0.0056

0.0079 0.0091 0.0065 0.0076 0.0097 0.0087 0.0090 0.0111

Variance muhat 1.2500 1.2900 1.3600 1.6300 1.6300 1.5000 1.4700 1.6100

sigmahat 0.8530 0.7190 0.9120 1.1600 1.5700 0.6950 0.9570 0.8560

muconfidence int 0.8130 0.9270 0.8980 1.0400 0.8240 1.1500 0.9750 1.1700

1.6900 1.6600 1.8300 2.2300 2.4300 1.8600 1.9500 2.0500

sigma confidence int 0.6400 0.5400 0.6840 0.8710 1.1800 0.5220 0.7180 0.6420

1.2800 1.0800 1.3700 1.7400 2.3500 1.0400 1.4300 1.2800
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angular second moment, (vi) entropy, (vii) mean from GLDM, (viii) inverse difference mo­
ment from GLDM, (ix) entropy measures from the LSTE5 mask, (x) entropy measures from
the LSTSS mask, (xi) mean from the histogram of the image, (xii) variance from the histo­
gram, (xiii) coefficient ofvariation from the histogram, (xiv) skewness ofthe histogram, and
(xv) kurtosis of the histogram. It is observed that data sets from both the hospitals exhibit
similar behavior. Figure 1 illustrates the variation ofthe mean features with respect to the
gestation age. The variable plotted is the mean of the ratios of the value oflung to liver fea­
ture. The experimental data has been fitted with a second degree polynomial based on least
square error. The variation ofonly six ofthe above IS features are shown in figure 1. We can
see that parameters, fractal dimension, lacunarity from fractal measures, angular second mo­
ment from GLDM, mean echogenicity, variance from the histogram and coefficient ofvaria­
tion from the histogram have trends that could possibly have some predictive value.

Figure 2 demonstrates the dynamics of the chosen features as a function of the gestation
age for the lung and the liver. Figures 2(a) and (b) show that the fractal dimension and
lacunarity increase as a function of the gestation age. Figure 2(d) shows a decrease in the
echogenicity of lung as compared to the liver as the gestation age increases. The echo­
genicity ofthe lung is almost the same as the echogenicity ofthe liver at early gestation age.
Thus, the lung seems to attenuate ultrasound waves more than the liver at later gestation ages
(cf. reference [4D. The variance ofthe gray values ofthe lung (Fig. 2(e)) has an upward trend
whereas that of the liver remains almost at the same level.

As seen from figure 2, the nature of variation of the features of the liver is, in most cases,
similar to that of the lung. In the case of the other parameters also, the liver shows lot of
change as a function of the gestation age. Since the tissues imaged are at the same depth for
both the lung and the liver, the features, which are mainly textural in nature, are reasonably
insensitive to the settings of the imaging system. This questions one of the basic assump­
tions, namely, that the sonographic features of the liver are expected to remain constant,
starting from the gestation age of24 weeks, and thus can be taken as a reference. The conclu­
sions ofmajority ofthe previous investigators are based on the study ofonly the echogenicity
of the liver and lung, which are more sensitive to the imaging parameters than the textural
features.

4. CONCLUSIONS

The ultrasound image formation depends on many factors. Hence, we have tried to main­
tain most of the machine parameters at a constant value. Since all the subjects studied are
normal, large variations in depth were not encountered in the study. Moreover, the lung and
liver areas taken for analysis were contiguous and at the same depth for each fetus. Since in
all the cases, the lung and the liver have been imaged together, the effects due to the imaging
techniques (including the internal processing by the machine) could be expected to affect
both the regions similarly. Thus, the ratios ofthe textural features are better indicators ofthe
histological changes, compared to the study ofonly the echogenicity. Further, some of the
features studied show some notable trend. Based on the data analyzed, it appears that the
characteristics ofthe ultrasound images hold promise in the analysis ofthe maturity ofthe fe­
tal lung. Thus, a complete sonographic analysis, which combines the above textural features
with parameters such as fetal biparietal diameter, placental grading, femur length, head cir­
cumference and the abdominal circumference could possibly enhance the prediction accu­
racy. Also, an analysis of data from high-risk pregnancies (mothers with hypertension or
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FIG. 1 Plot showing the variation ofmeans ofthe ratios ofIung to liver feature values with respect to the gesta­
tion age. The curve shown is a least square fit ofthe points by a second degree polynomial. Top row: (a): fractal di­
mension, (b): lacunarity. Second row: (c): angular second moment, (d): mean calculated from the histogram ofthe
image. Bottom row: (e): variance obtained from the histogram, (I): coefficient ofvariation computed from the his­
togram.
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FIG.2 Plot showing the variation ofthe mean ofvarious features oflung and liver with respect to the gestation
age. The curves shown are the least square fits ofthe points by second degree polynomials. Top row: (a): fractal di­
mension, (b): lacunarity. Second row: (c): angular second moment, (d): mean calculated from the histogram ofthe
image. Bottom row: (e): variance obtained from the histogram, (t): coefficient ofvariation calculated from the his­
togram.
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(a)

(b)

FIG. 3 Sample fetal echogram images showing the regions of liver and lung.
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diabetes mellitus) could be used to further validate the prediction of maturity using
sonographic features.
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